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1 導入
差分プライバシーでは, データベースへの問合せに擾乱 (random noise) を付加 (perturbation)

することで, 問合せした結果である数値を確率的に振舞わせる. この処理を乱択関数 (randomized

function) K を用いて実施する. 例えば, データベースを D で表現し, データベース D から決定
的に出力が定まる関数を f とすれば, 乱択関数は次のように表せる.

K(D) = f(D) + n. (1)

ここで, n は平均 0, 分散 σ2 の正規分布に従う確率変数である (n ∼ N(0, σ2)). ノイズ項 n によ
り, K(D) も確率変数として取り扱えるため, 確率質量関数 (または確率密度関数) が定義可能であ
る. 確率密度関数を ρ で定義し, 2つのデータベース D,D′, その問合せ結果 t を考えた時, 次の不
等式が成立すれば, それを ϵ−区別困難性 (ϵ-indistinguishable) [1]と呼ぶ.

ρ(K(D) = t)

ρ(K(D′) = t)
≤ exp(ϵ). (2)

例えば, ϵ = 1/100 の場合, exp(ϵ) ≈ 1.0100... となる. つまり, exp(ϵ) を用いることで, 任意の問合
せ結果 t における確率密度関数の近さの最悪値を, 見積もることができるようになる. このように
プライバシーの問題を, 確率密度関数を用いた数学の問題に定式化することで, 証明可能なプライ
バシー (Provable Privacy) [2] を実現することができる.

1.1 ラプラス機構 (Laplace Mechanism) による ϵ-差分プライバシーの実装
上記では, 一つの問合せ結果 t に関する差分プライバシーを定量的に評価した. より一般的な複

数の問合せに対応するため, ランダムノイズが付加された問合せ結果である関数 K の出力の部分
空間 S を考えることで, 以下のように (2) 式をアップデートできる.

Pr[K(D) ∈ S]

Pr[K(D′) ∈ S]
≤ exp(ϵ). (3)

(3) の関係式が成立することを, ϵ− 差分プライバシー (ϵ-Differential Privacy) が保証されると呼
ぶ [3]. 任意の部分空間 S (全てのデータベースへの問合せ) について, (3)式が成立すれば, 常に ϵ-

区別困難になるということである.

ここで, 尺度母数 b が等しく, 期待値 µ のみが異なる 2つのラプラス分布 (平均は µ1, µ2) の確
率密度関数の比を考える. ラプラス分布の確率密度関数は (4) 式で与えられる. 一般性が失われな
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いため, µ1 < µ2 とする. 絶対値で 3つの区間に場合分けする (図 1)と, 各区間の確率密度関数の
比 R(x) は (5)式で与えられる.

f(x | µ, b) = 1

2b
exp

(
−|x− µ|

b

)
, −∞ < x < ∞. (4)

R(x) =
f(x | µ1, b)

f(x | µ2, b)
=


exp

(
µ2−µ1

b

)
, x < µ1,

exp
(
2x−µ1−µ2

b

)
, µ1 ≤ x ≤ µ2,

exp
(
µ1−µ2

b

)
, x > µ2.

(5)

図 1: Laplace distributions with µ1 = −1.0, µ2 = 2.0, and b = 1.0.

(5)式の値をプロットした結果を図 2に示す. ラプラス分布の比の上限は exp(|µ2 − µ1|/b)で与
えられていることが分かる.

図 2: The ratio of two Laplace distributions with µ1 = −1.0, µ2 = 2.0, and b = 1.0.
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従って, 以上の議論より, (1)式に従って, 2つのデータセット D,D′ から出力される f(D), f(D′)

として, その各成分に平均 0, 尺度母数 b のラプラス分布に従うノイズを付与すると, それら 2つの
確率変数の確率密度関数の比は, 次の関係式を満たす.

f(x | f(D), b)

f(x | f(D′), b)
≤ exp(|f(D)− f(D′)|/b) (6)

ここで, 考えられる全ての D,D′ について, 最大となる |f(D)− f(D′)| を (6)式の右辺に代入す
れば, それが全ての D,D′ に対して差分プライバシーを保証する上限となる. これを, ラプラス機
構における関数 f の感度 (Sensitivity) ∆f と呼び, 次式で定義される (D は考慮するデータベース
の全体集合).

∆f = max
D,D′∈D

∣∣ f(D)− f(D′)
∣∣ (7)

n 次元ベクトルの出力 f(D) に対して, ラプラス機構を適用させる場合, 次のような L1 距離の
最大値を考えればよい.

∆f = max
D,D′∈D

∣∣∣∣ f(D)− f(D′)
∣∣∣∣
1

(8)

逆に言えば, 厳密にラプラス機構を適用させるためには, (8)式を計算する必要がある. しかし, デー
タセットの外れ値を考慮すると, それが困難なケースも存在する. データセットの生成モデルを考
え, あまり生じない問合せである出力 f(D) を無視する近似的な差分プライバシー (Approximate

Differential Privacy) という手法も存在する.

Pr[K(D) ∈ S] ≤ exp(ϵ)× Pr[K(D′) ∈ S] + δ. (9)

これは, 確率 Pr[K(D) ∈ S] < δ について, 差分プライバシーを考慮しない手法であり, (ϵ, δ)-差
分プライバシーと呼ばれる.
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