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1 導入
RAPPOR [1] は, Google の U. Erlingsson らによって 2014 年に提案された, クライアントが

保持する値 v をローカル差分プライバシーを保証したまま収集し, 統計的に分析するためのアル
ゴリズムである. 値 v から得られる h 個のハッシュを用いたブルームフィルタの出力を B とし
て, B = (B1, ..., Bm) で定義する (m は十分に大きいとして, h 個のビットの値が 1 とする). この
ビット列 B に対して, 以下の Permanent Randomized Response (PRR) 処理を施したビット列を
B′ = (B′

1, ..., B
′
m) を次式で定義する.

B′
i =


1, with probability f

2 ,

0, with probability f
2 ,

Bi, with probability 1− f.

(1)

また, ビット列 B′ に対して, 以下の Instantaneous Randomized Response (IRR) 処理を施した
ビット列 S = (S1, ..., Sm) を次式で定義する (S の全てのビットは初期値で 0).

P (Si = 1) =

q, if B′
i = 1,

p, if B′
i = 0.

(2)

ユーザはビット列 B′ は固定して, (2) 式の処理で得られるビット列 S を都度サーバーに送信す
る (図. 1 を参照).

図 1: RAPPOR アルゴリズムにより送信されるビット列 S 生成の流れ ([1] の Fig. 1 より引用).
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2 RAPPOR アルゴリズムのローカル差分プライバシーの評価
以下, 大文字を確率変数, 小文字を実現値と考える.

2.1 PRR に関する ϵ∞-差分プライバシー
クライアントの保持する v に対して, 最終的にサーバーにレポートするビット列が s となる確率
は次式で与えられる (ハッシュ関数計算は決定論的に実行されるため, P (B|v) = 1).

P (S = s|V = v) = P (S = s|B′, B, v) · P (B′|B, v) · P (B|v),

= P (S = s|B′) · P (B′|B). (3)

ここで, B′ が与えられたとき, S は B に依存しない確率変数であるため, 上式の確率 P (S = s|B′)

は, 差分プライバシーに与える影響はない. 従って, P (B′|B) について論ずれば十分である.

何らかの確率的な処理を施す機構 A が, 値 v1, v2 について, ϵ 差分プライバシーを満たすとは,

次の不等式が成立することである ([2] を参考. R は機構 A の出力により構成される任意集合).

P (A(v1) ∈ R)

P (A(v2) ∈ R)
≤ eϵ. (4)

従って, ブルームフィルタの入力を B1, B2, ビット列 B′ が取りうる任意の集合を R∗ として以
下のようにして, 確率比の上限を求める.

RR∞ =
P (B′ ∈ R∗|B = B1)

P (B′ ∈ R∗|B = B2)
,

=

∑
B′

j∈R∗ P (B′ = B′
j |B = B1)∑

B′
j∈R∗ P (B′ = B′

j |B = B2)
,

≤ max
B′

j∈R∗

P (B′ = B′
j |B = B1)

P (B′ = B′
j |B = B2)

. (5)

ここで, Bi がビット列であるため離散的な総和で確率を表現できること, および付録 A の不等式
が成立することによって, 上限が計算できていることに注意する. (5) 式の右辺が最大となるケー
スは, 2 つのブルームフィルタのハミング距離が 2h になる時である. また, (1) 式より, (6), (7) 式
が成立し, 1− f/2 > f/2 である.

P (b′i = 1|bi = 1) =
1

2
f + 1− f = 1− 1

2
f, (6)

P (b′i = 1|bi = 0) =
1

2
f. (7)

従って, (8) 式が成立する.

max
B′

j∈R∗

P (B′ = B′
j |B = B1)

P (B′ = B′
j |B = B2)

=
(1− f/2)h

(f/2)h
· (1− f/2)h

(f/2)h
. (8)

右辺の第一因子は, ビット列 B2 の h 個の 0 が 1, ビット列 B1 の同じ位置のビットが 1 から
1 になる確率. 右辺の第二因子は, ビット列 B2 の h 個の 1 が 0, ビット列 B1 の同じ位置の
ビットが 0 から 0 になる確率と捉えればよい. つまり, RR∞ = ((1− f/2)/(f/2))

2h となるため,

ϵ∞ = 2h ln((1− f/2)/(f/2)) となる.

2



2.2 IRR に関する差分プライバシー
ビット列の i 番目の要素 Si, Bi について, 次式が成立する.

q∗ = P (Si = 1|Bi = 1) =
1

2
f(p+ q) + (1− f)q, (9)

p∗ = P (Si = 1|Bi = 0) =
1

2
f(p+ q) + (1− f)p (10)

従って, PRR の時と同様な議論をして, 1 回の IRR が保証する差分プライバシーは次式で表現で
きる (ここで, q∗ > p∗ (即ち q > p) となるようにパラメータを設定する).

RR1 =
P (S ∈ R|B = B1)

P (S ∈ R|B = B2)
,

=

∑
Sj∈R P (S = Sj |B = B1)∑
Sj∈R P (S = Sj |B = B2)

,

≤ max
Sj∈R

P (S = Sj |B = B1)

P (S = Sj |B = B2)
,

=

[
q∗(1− p)∗

p∗(1− q∗)

]h
. (11)

つまり, ϵ1 = h ln((q∗(1− p)∗)/(p∗(1− q∗))). これが 1 回の IRR を実施した際の差分プライバシー
保障である. IRR を繰り返すたびに, この差分プライバシーの上限値は大きくなるが, その上限は
ϵ∞ で抑えられている.

参考文献
[1] U. Erlingsson, V. Pihu and A. Korolova, ”RAPPOR: Randomized Aggregatable Privacy-

Preserving Ordinal Response,” arXiv:1407.6981, 2014.

[2] C. Dwork, ”A firm foundation for private data analysis,” in Comm. ACM 54(1), pp.86-95,

2011.

付録 A Max-Dominance Inequality

次の不等式が成立する. 証明は, 分子を∑
i bi · (ai/bi) と考えて, bi に関する重み付き平均を取っ

ていると考えれば, 明らかである (常に最大の重み M = max
i

ai/bi を取るケースを考えれば, 等式
が成立する). ∑

i ai∑
i bi

≤ max
i

ai
bi
. (12)
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