RAPPOR 713V X 2 DIEE

Hirotsugu Seike

2025 F 12 H31 H

1 EBA

RAPPOR [1] IZ & o T, (EREDOXFH D MBS O#fiEHER 2 i 4 ADT'Z A NS —ZARFEL 7=
IREETIERTRETH 5. ARITIX, #i [1] @ Basic One-time RAPPOR IZDWT, ZDEE 71
L 2AFTEZEL®H3. RAPPOR THWS 7L— L7 4 V2D T & LMUIHIE, PRR (Permanent
Randomized Response) & IRR (Instantaneous Randomized Response) @ 2 DIZ7fHIN 5.
Basic One-time RAPPOR T, fi& OLUIIXFEITENT, IRR % 1 BIOAFETT 5. E-T, U
Fo##iz, PRR WHED 5 X—&XTH% f=0 £ L, IRR % 1 LM TRV — R %R

FH v X UT, h DNy & 2 B8% FWT, B bit D7V —L7 4 LREERT 27— R
BEZDL. EDEL Y NTHD B, 27 VXL 8 S 1220 T, RADKILT % &£ 512 IRR
YU g i

Pﬁznz{“&:”’)
p, (B =0)

q=075p=05 ¢ LTmX [1] Tid526NhTW3. $hbb, 7L—L7 4 LRIZBWVT 1
M- T3 Bit MLEX, o Bit (i@ & LERT, 1 KEH XN ZHERPE N W HEEFD. 2
DEIWCLUTNELT, IRR WHEAD TV — L7 4 LZ D4 Bit OAIE ¢;; TERT 3. j 13,
Z D (Report) DR T 2 AR — I+ 2RITA VT v I RATHS. DFD, ¢ 1, TR—1 j I
BIF2 i BHOIT V=107 4 VXD Bit DfEME BIFERS. T—LT7 4 L XITEBWT 1 HiLo
TW3 Bit O ¢;; &, R ¢ =0.75 O_IESATRIN, ZOMIIHER p = 0.5 O _IHZHIHES
MERETH % & DRMATEETH 5.

RICTN =BT 4 NZRIZT R AMUHZMA I, BELELEEOND ¢ & t; LER
L&5. Zo5E, RADHKIT 5.

Elei] = q - tij + p(Nj — tij). (2)
ZZT, N; 3ak—tHNOLR=-MRETHS. £/, 2 RWERO XS ICEEMZ 20T
x5.
E[Cz;} *ppNj. (3)
cij DFEBUE%R Elc;;] WKRATZ LT, t; 2HETS. Bbit 7D t;; ZHIRZ L l, EH
WKZDHIRZ P ABELIAR—bF j=1.m IZOWTHEAFNZAINRTZFINRT bV % Vo, EEFRTS.
Yiee (&, Bm RICDHIRT L iz 3 Z 2 ITHEET 5.

t,;j =

2 Y. ZRAWVWEXFS v OSEEHTE

MIEAFEIC T 2 72, XXFH| v DIiE M =200 £ 3%. 0D L, Basic One-time RAPPOR
WX DREINLFHN R 100 fIRET 5. XFH v BRZLZ ik hFohns TN —
LT ANRIEERS. F72, ak—b jBICTINV—LT 4 N RIHAWE Ny 2 BB ELZ L5
WEETT % (ah— MRy Y aBIEEZ 2 DI, EEL TL— L7 4 VR DO B HESE
T 5, HEZ 23XFH v DEFELZRANONUDT-0HTH).

BXFHINET BTN =0T 4 VRZEHIRT b LTHER, ZRE2TOakr— MIOWTLT
HIENZAHARZZATH X #EZB. 2T, X 1 Bmx M THTH 3. Yoo 2175 X THIFL 2R
BRI ML B 2EZZ Y, IR CFHINHIR LB OMEZHEE L ETH 2 LBRTE 2.

X [1] T, ZOfE% LASSO [HIE%E FWT, 5 0 &4k 2 FF 3> o5 L, 20tk
OLS (il DR/N_3ik) Z2FWT 3 2HEEL, t BUEICE D, JEEahoIETH 5 LS iz
EFTOXFHN DA RAPPOR 743 XA TIRE SN DD LERT 5. KT, 20 I 2L —
TavDFEFRTA—REY —Aa—RERNT 3.

3 YZal—>a vEReY—RXRd—F

TN—=LT 4 NVRDY A4 X3 128 3§ 5. RWMEREZ N =20,000 £ L, ak— iz 8 ¥
5. DFD, Fak— 1 T OWMERE N; = 2500 TH 5. ¢ ENFMD =D ZIHATHK
T% (¢=0.75,p=05TH5. EED RAPPOR OFF = IEML V). EFtick hERkEIhrz
cij BHWT t; RETHEL, Yiee 2T 5. LASSO OIERNLGRENK 0.1 & U, YR EHFEE T, [
JRREDY 0.001 & D /N WSEF] v B2 S L7z, OLS YR IEIEER S, AHIEL L
T, a=0.05 ZEHEFRHE L.

HEL S 2 XTI o Zipf BICHES 7—& 1/r® (a =0.7) ZHHALE (r =1..100 TH 3.
flzd 100 EDOXFHFNIHEIL L 720, precision % OLS D RUREIRE THH & /- SLFF o
5, REICHB L 72 XFHNOEIE L L, recall % 100 HD KIS 2 X FF| DR 5 FEERIHBE
L FHDOE G EFRETS. F h T2 I 2L —> 3213 16 HFfTWVL, 10 FIOFENT & 2
precision, recall ZfREEE L7z,

LIy Ialb—ya iR ERT (BR2BD Ny > 2B h TOD precision, recall % #Hifi L
TW3). K 2, 31 precision, recall ZFH T 270DV —Ra— RFERT.

0961 @ h=2 k
© h=4 '.
® h=8 [’
0941 @ h=16
° (] ;
el ° 00 o b
’ C
0.92 ‘b e ©
o
c ®
a °
(9]
g 0.90 : Sl o
£ . ’i
..
0.88 @
"1 ™
o0 ®
0.86
L)
0.15 0.20 0.25 0.30 0.35 0.40 0.45
Recall

1: RAPPOR D1EEHE. B = 128, M = 200, m = 8

F, Y —Ra—FTH5.

import numpy as np

import pickle

import sys

from sklearn.linear_model import Lasso
import statsmodels.api as sm

import create_design_matrix as cdm

IRR ¥Ial—tMH - “HpMZ2MEH

def binomial_by_mask(x, g_dash, p_dash, n=1):
nnonn

uuuuXy:ulDyarrayyof,0/1

uuuux_i=1,->Binomial (n,q_dash)

uuuuXx_1i=0,->,Binomial (n, ,p_dash)

nnn
[N S|

probs = np.where(x == 1, q_dash, p_dash)
return np.random.binomial(n, probs)

XFHHBRS T2V — VH - ZHESHE2EH

def simulate_word_counts(N, m, word_probs):
N_per = N // m
M = len(word_probs)

counts = np.zeros((m, M), dtype=np.int64)
for ¢ in range(m):

counts[c] = np.random.multinomial (N_per, word_probs)
return counts

Word frequency distribution
def get_word_probs(M, active_words=100, alpha=1.1):
probs = np.zeros(M, dtype=float)

r = np.arange(l, active_words + 1)
w = 1.0 / (r ** alpha)
probs[:active_words] = w / w.sum()

return probs

=========================
Parameters

=========================

B = 128 # Bloom filter size

M 200 # number of candidate words

m 8 # number of cohorts

h =38 # number of hash functions (fized)
=========================

population distridbution parameters

=========================

ACTIVE_WORDS = 100
ALPHA = 0.7

number of reports, and size of cohorts

—==========z===z===========
N = 20000

N.c=N//m

—========================

design matric

—==========z===z===========

data = cdm.create_design_matrix(B, M, m, h)
X = data["DM"] # X: shape (B*m, M)

X_T = X.T # shape (M, B*m)

split 2nto m blocks along columns
TrueBF_cohorts = np.split(X_T, m, axis=1) # (M, B) * m

===
ZIhHYIal—varERFET
===

np.random.seed (10)
word_probs = get_word_probs(M, active_words=ACTIVE_WORDS, alpha=ALPHA)
counts_cohorts = simulate_word_counts(N, m, word_probs) # (m, MTTHI

Y_vec = np.zeros(B * m)
for i in range(1l, m + 1): # ak—bFETIL-T
counts = counts_cohorts[i-1,] # FIXZ MUMEEEHEHEMBER ()
counts counts [: ACTIVE_WORDS] # HETIHEOAICI I 2L —2a v ZERETS
TrueBF = TrueBF_cohorts[i-1] # (M, B){7¥l
for j, count in enumerate (counts): # BT BN —Tstrings
if j == ACTIVE_WORDS:
break
Y_vec[(i - 1) * B: i * B] += binomial_by_mask(TrueBF[j,:],
g_dash, p_dash, n=count)
Y_vec[(i - 1) * B: i * B] = (Y_vec[(i - 1) * B: i * B] - p_dash * (N

// m)) / (q_dash - p_dash) # f = 0, One-time Dk®
RAPPOR

B Kok K Kok K K K K K K K K K O K K K K K

LASSO Regression WCX2B XXMM : v - x

N R A I IIITTY,

1ZIERHtEE alpha

lasso = Lasso(alpha=0.1, positive=True, max_iter=10000,
fit_intercept=False)

lasso.fit (X, Y_vec)

DFGERLASSO

coef = lasso.coef_ # shape (200,)

eps = 1le-3

idx_lasso = np.abs(coef) > eps

X_sel = X[:, idx_lasso]

selected_words = np.where(idx_lasso) [0]

F K KKK KK KKK KK KKK KKK KKK KKK KKK

OLS(Ordinary Least Squares) Regression IXX2 87 X—%H#Hl: v ~ X_sel, %fFH

statsmodel
FE KK KK K KKK KK KKK KKK KK KKK KKK

[AROFEMOLS

model = sm.O0LS(Y_vec, X_sel)
results = model.fit ()

[l & EHRE & O HUS
beta_hat = results.params

se = results.bse

t_stat = results.tvalues

p_vals_two = results.pvalues

FriE

mask = t_stat > O

p_vals = np.ones_like(p_vals_two)
p_vals[mask] = p_vals_two [mask] / 2.
RFGREIC X 2 F 55 X =& DHIE
alpha_test = 0.05

keep = p_vals < alpha_test
final_indices = selected_words [keep]

FE ok Kok ok ok K K K ok K ok K ok ok X ok ok ok Kok X%

True / False regions
B KA KA A KA A K KA KA KK KA K

true_region = (final_indices >= 0) & (final_indices < 100)
false_region = (final_indices >= 100) & (final_indices < 200)

TP = np.sum(true_region)

FP = np.sum(false_region)

FN = 100 - TP # true words are 0" "e2”°"80°"9399 (100 words total)

precision = TP / (TP + FP) if (TP + FP) > 0O else 0.0
recall = TP / (TP + FN) if (TP + FN) > 0 else 0.0

print("TP:", TP)

print ("FP:", FP)

print ("Precision:", precision)
print ("Recall:", recall)

2: Simulation code for recall-precision evaluation.

import os

import pickle
import hashlib
import numpy as np

def sha256_to_index(s: str, mod: int) -> int:
h = hashlib.sha256(s.encode("utf-8")).hexdigest ()
return int(h, 16) % mod

=========================
Design matriz A € {0,1}"{(Bm) X M
B = 128 # Bloom filter size
M = 200 # number of candidate words
#m = 8 # number of cohorts
h = 32 # number of hash functions (fized)}
=========s=s===ss=s=s=========
def create_design_matrix(B, M, m, h):
base_secret = str(np.random.random()) + "secret"
output_dir = "design_matrices"

A = np.zeros((B * m, M), dtype=np.int8)

for ¢ in range(m):
secret_c = f"{base_secret}_{c:02d}"
row_offset = ¢ *x B

for j in range(l, M + 1):
word_id = f£"{j:034}" # "o01" ... "200"
secret_c_word = secret_c + "_" + word_id

for i in range(l, h + 1):
hash_id = £"{i:02d}" # "01" ... "04"
input_str = secret_c_word + "_" + hash_id
print (input_str)
idx = sha256_to_index (input_str, B)
Alrow_offset + idx, j - 1] =1

return {

"DM": A,

"B": B,

"M": M,

"m": m,

"h": h,

"base_secret": base_secret,

"description": "Designymatrixgstackedy byycohorts: rowsy
[c*B:(c+1)*B)"

}

3: Simulation code for creating the design matrix (X).

SE X

[1] U. Erlingsson, V. Pihu and A. Korolova, "RAPPOR: Randomized Aggregatable Privacy-
Preserving Ordinal Response,” arXiv:1407.6981, 2014.

T8 A HRICHL

