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1 導入
量子状態はヒルベルト空間 H = C2 のベクトルと考えられる. 標準基底 (Z 基底) を次式で定義

する.

|0⟩ =

(
1

0

)
, |1⟩ =

(
0

1

)
. (1)

この時, 任意の 1 量子ビット状態 |ψ⟩ は, 次式で書ける (ただし, 確率振幅 α, β ∈ C かつ
|α|2 + |β|2 = 1 である.

|ψ⟩ = α|0⟩+ β|1⟩. (2)

Z 基底で測定した時, 量子ビットが |0⟩, |1⟩ (つまり 0, 1) と測定される確率はそれぞれ以下のよ
うになる (内積は ⟨0|0⟩ = ⟨1|1⟩ = 1, ⟨1|0⟩ = ⟨0|1⟩ = 0 となるため).P (|0⟩) = |⟨0|ψ⟩|2 = |α|2,

P (|1⟩) = |⟨1|ψ⟩|2 = |β|2.
(3)

この性質は,量子力学における基本原理の一つであり,ボルン則 (Born rule)と呼ばれる. 特に α = 1

または β = 1 の場合, Z 基底で測定すると決定論的に量子ビットの値が定まる. つまり, 測定時に
選択した基底に応じて, 測定結果が確率 1 で定まる場合と確率的に分布する場合が生じる. 一定条
件下で測定結果が決定論的に定まる特徴を利用することで, 盗聴を検知することが可能である.

2 BB84 プロトコル
BB84 プロトコルとは, 1984 年に C. H. Bennett, G. Brassard によって提案された量子鍵配送

(QKD: Quantum Key Distribution) 方式である [1]. Alice を送信者, Bob を受信者, Carol を盗聴
者とする. Alice は, ヒルベルト空間 H 上に, 次の 2 つの正規直交基底を定義する.

Z = { |0⟩, |1⟩ }, X = { |+⟩, |−⟩ }, (4)

ここで,

|+⟩ = |0⟩+ |1⟩√
2

, |−⟩ = |0⟩ − |1⟩√
2

. (5)

である. Alice は, ランダムなビット a ∈ {0, 1} とランダムな正規直交基底 Ba ∈ {Z,X} を選択し,

次式のような量子ビット |ψa⟩ を Bob に送信する.

|ψa⟩ =


|a⟩, (Ba = Z),

|0⟩+ (−1)a|1⟩√
2

, (Ba = X).
. (6)

1



Bobは正規直交基底 Bb ∈ {Z,X}をランダムに選択して, |ψa⟩を測定する. つまり,運よく Ba = Bb

となった場合, 以下のようになる.P (|0⟩) = |⟨0|ψa⟩|2 = 1, (a = 0, Ba = Z,Bb = Z)

P (|1⟩) = |⟨1|ψa⟩|2 = 1, (a = 1, Ba = Z,Bb = Z)
(7)

P (|+⟩) = |⟨+|ψa⟩|2 = 1, (a = 0, Ba = X,Bb = X)

P (|−⟩) = |⟨−|ψa⟩|2 = 1, (a = 1, Ba = X,Bb = X)
(8)

一方で, Ba ̸= Bb の場合, 以下のように量子ビットは 0, 1 として, ランダムに観測されることに
なる. P (|+⟩) = |⟨+|ψa⟩|2 = 1/2, (a = 0, Ba = Z,Bb = X)

P (|−⟩) = |⟨−|ψa⟩|2 = 1/2, (a = 1, Ba = Z,Bb = X)
(9)

P (|0⟩) = |⟨0|ψa⟩|2 = 1/2, (a = 0, Ba = X,Bb = Z)

P (|1⟩) = |⟨1|ψa⟩|2 = 1/2, (a = 1, Ba = X,Bb = Z)
(10)

BB84 では, 上記のように Alice がランダムに送信した量子ビットを Bob が観測する. その後,

古典的な通信路で, 各量子ビットを生成する際に Alice が用いた正規直交基底 Ba の情報を Bob

に送る. そして, Ba ̸= Bb となる量子ビットは全て捨てる. 残った量子ビット m 個の情報 {0, 1}m

を用いて, 共有鍵を作成することができる.

仮に, Carol が Man in the middle attack を仕掛けて, 量子通信を傍受したとする. その場合,

古典的通信と異なり, 観測する前の量子ビットを再現して Bob に送信することはできない. Carol

が選択した基底 Bc ∈ {Z,X} が Alice の基底と一致しているかどうかは不明であり, Alice が量子
ビットを作成するために必要だった a ∈ {0, 1}, Ba ∈ {Z,X} に関する情報を一切保持していない
ためである.

従って, Carol が Alice と同じ基底を用いて測定できていない Bc ̸= Ba 上で, Bob が Alice と同
じ基底を用いたにも関わらずビットを測定できていないパターンで盗聴を検知できる. その確率は
1 量子ビットにつき, 次式で与えられる.

QBER = Pr(bE ̸= bA) Pr(error | bE ̸= bA) (11)

=
1

2
× 1

2
=

1

4
. (12)

従って, 測定用の基底が等しい (Ba = Bb), 十分に大きな m が与えられれば, 次式より盗聴を検知
できない確率は指数関数的に下がる.

Pundetected = (1−QBER)
m

=

(
3

4

)m

. (13)
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付録 A 特になし

2


