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1 導入
ドリフト付きブラウン運動 (Brownian motion) とは, 標準ブラウン運動 Bt が与えられた時

に, Xt = µt + σBt (µ, σ > 0) で定義される確率過程である. 本稿では, 過程が水準 a を初め
て上回る初到達時間 ra の分布が逆ガウス分布に従うことを示す (µ = 0 でレヴィ分布となる).

Yt ≡ µ/σt+Bt = θt+Bt として, ra ≡ inf{t : Yt ≥ a/σ = b} の分布を求めればよい.

2 導出
2.1 確率測度の変換
反射原理 (reflection principle) を適用するため, Yt を標準ブラウン運動として扱える確率測度

Q を次式で定義する.

dQ

dP

∣∣∣∣
Ft

= Zt (Zt = exp(−θBt −
1

2
θ2t)). (1)

P は基準測度 (reference measure) であり, これをギルザノフ変換 (Gilsanov Transformation)

と呼ぶ [1]. Ft は, 時刻 t までに分かっている情報全体からなるフィルトレーション (filtration) で
ある. 上記の非負確率過程 Zt が, EP [Zt] = 1 を満たしていることに注意する (確率測度変換の必
要条件).

ここで,確率測度 Qの下で, Yt が標準ブラウン運動になることを示す. 初期値は Y0 = θ·0+B0 = 0

となる. 二次変分は < Y >t=< B + θt >t=< B >t= t となる. また, Yt が Q-マルチンゲールで
あることを示せばよい. つまり, 任意の 0 ≤ s < t について, EQ[Yt|Ft] = Ys が成立する.

任意の Ft-可積分な X について,

EQ[X|Fs] =
EP [ZtX|Fs]

EP [Zt|Fs]
. (2)

ここで, X = Yt = θt+Bt とする. 2 式右辺の分母は, 以下の式変形より, Zs となる.

EP [Zt|Fs] = EP [exp(−θBt −
1

2
θ2t)|Fs], (3)

= EP [exp(−θBs −
1

2
θ2s) · exp(−θ(Bt −Bs)−

1

2
θ2(t− s))|Fs], (4)

= Zs · EP [exp(−θ(Bt−s)−
1

2
θ2(t− s))|Fs] = Zs. (5)
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ここで, 異なる区間での標準ブラウン運動の独立性を利用したことに注意する. また, 2 式右辺の
分子は, 以下の式変形より ZsBs となる (∆B = Bt −Bs,∆t = t− s とした) .

EP [ZtYt|Fs] = ZsEP [exp(−θ∆B − 1

2
θ2∆t) · (Bs +∆B + θt)|Fs], (6)

= Zs ((Bs + θt)− θ(t− s)) , (7)

= Zs(Bs + θs) = ZsYs. (8)

6 から 7 式への変形は, EP [exp(−θBt)] = exp(1/2 · θ2t) の両辺を θ で微分することで得られる
EP [−Bt exp(−θBt)] = θt exp(1/2 · θ2t) より導ける.

2.2 反射原理と確率密度関数の導出
過程 Yt の上限が b 以上である確率から, 初到達時間 ra の累積分布関数が得られる.

P (ra ≤ t) = P (sup
s≤t

Ys ≥ b). (9)

前節の測度変換の議論より, dP/dQ|Ft
= 1/Zt となる. 指標関数 1(·) を用いて 9 式は次のよう

に書くことができる.

P (ra ≤ t) = EQ[exp(θBt +
1

2
θ2t) · 1{sup

s≤t
Ys≥b}], (10)

= EQ[exp(θYt −
1

2
θ2t) · 1{sup

s≤t
Ys≥b}]. (11)

また, 事象を分解すると {sup
s≤t

Ys ≥ b} = {Bt ≥ b} ∪ {sup
s≤t

Ys ≥ b, Ys ≤ b} となる. ここで, 反射写
像 Rb を次式で考える.

(RbY )s =

Ys, s ≤ ra,

2b− Ys, s > ra.
(12)

事象の第二項の確率計算は, Bt > b として, その反射である Bt − 2(Bt − b) = 2b−Bt は同確率
で存在することを利用する. 事象の第一項の確率を I1, 第二項を I2 として, 各々次式のように計算
される.

I1 =

∫ ∞

b

exp

(
θx− 1

2
θ2t

)
1√
2πt

exp

(
−x2

2t

)
dx, (13)

=

∫ ∞

b

1√
2πt

exp

(
− (x− θt)2

2t

)
dx = Φ(

θt− b√
t

). (14)

同様にして,

I2 = exp (2bθ)

∫ ∞

b

exp

(
−θx− 1

2
θ2t

)
1√
2πt

exp

(
−x2

2t

)
dx, (15)

= exp (2bθ)Φ(−θt+ b√
t

). (16)

ここで, Φ(·) は, 標準正規分布の累積分布関数であり, θ → ∞ で I1 = 1, I2 = 0 になることに注
意する (ドリフトの影響が大きくなれば, 時刻 t で水準 a を越す確率が 1 に収束).

P (ra ≤ t) = I1 + I2 の両辺を t で微分して, b = a/σ, θ = µ/σ を代入し整理して, 次の確率密度
関数が得られ, 逆ガウス分布に従うことが分かる (µ = 0 でレヴィ分布).

fra(t) =
b√
2πt3

exp

(
− (b− θt)2

2t

)
, t > 0, (17)

=
a

σ
√
2πt3

exp

(
− (a− µt)2

2σ2t

)
, t > 0, (18)
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図 1: 反射原理の概念図
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付録 A 特になし
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