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1 導入
熱伝導方程式は, 形式解を導くことができる珍しい一例である (2 階線形偏微分方程式の場合, 波
動方程式, ラプラス方程式なども形式解が得られる). 金融・証券分野で搭乗するブラック・ショー
ルズ偏微分方程式においても, 同様な式変形を行って形式解を導出する [1]. また, 熱伝導方程式は,

拡散方程式とも呼ばれ, 「何かが空間やネットワーク上でなだらかに広がる」現象を, 汎用的に表
現可能である.

2 熱伝導方程式の導出と, その形式解
例えば, 一次元の棒の温度分布 y(u, x) を考える (場所を u, 時刻を x とする). 導体の比熱が
一定と仮定して, 区間 [α, β] の総熱量は Q(x) =

∫ β

α
y(u, x)du となる. フーリエの法則より, 各

点での熱流は温度勾配 ∂y(u, x)/∂u に比例するため, 比例定数 a > 0 として, u = β の熱流出は
a · ∂y(u, x)/∂u|u=β で与えられる. 従って, 熱の出入りは, 総熱量 Q(x) の時間変化に等しいため,
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総熱量の Q(x) の定義を考えると, 次式が得られる.
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(u, x) = a · ∂
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(u, x). (2)

以下, 簡単のため yx(u, x) = ayuu(x, u) で上式を表す. 境界条件として, 初期の温度分布が g(u) で
与えられ場, 棒の両端 [0, 1] で熱の出入りが存在しないことを仮定する.yu(0, x) = 0, yu(1, x) = 0,

y(u, 0) = g(u).
(3)

また, y(u, x) が u と x の関数として, y(u, x) = V (u)W (x) と表せると仮定すれば, 2 式より, 4

式が得られる (λ は実数とする).

Vuu(u)

V (u)
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1

a
· Wx(x)

W (x)
= λ. (4)

u に関する定数係数 2 階線形微分方程式を解いて, 3 式の境界条件を考慮すれば, 下式が得られる
(特性方程式は s2 − λ = 0).

V (u) =


0, (λ > 0),

C, (λ = 0),

C ′ cos(nπu), (λ < 0,
√
−λ = nπ, n = 1, 2, ...).

(5)
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ここで, C,C ′ は積分定数である. 4 式は, x に関する定常係数 1 階線形微分方程式であるため,
√
−λ = nπ (n = 1, 2, ...) であることを思い出せば,

W (x) = D · exp(−an2π2x). (6)

ただし, D は積分定数である. 従って, 5, 6 式を重ね合わせて (4 式の λ の値は共有していること
に注意する),

y(u, x) = V (u) ·W (x) =

∞∑
n=0

C(n) · cos(nπu) · exp(−an2π2x). (7)

ここで, 境界条件 y(u, 0) = g(u) と, 周期 2 の周期関数であることを考慮し, フーリエ級数展開の
係数と比較すれば, 係数 C(n) が求まる (y(u, 0) が偶関数であることを利用した. また, y(u, x) = 0

(u /∈ [0, 1]) であることに注意する).

C(n) = 2

∫ 1

0

g(u) cos(nπu)du (8)
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付録 A 特になし
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