
生起回数が負の二項分布に従う事象のシミュレーション
Hirotsugu Seike

2026年 1月 1日

1 導入
負の二項分布は, 偶然が起きる「環境」のバラつきを考慮した事象の発生回数が従う分布である.

例えば, 1 日の間にパソコン上で発生するエラー数, 日毎の SNS 投稿数・感染数・事故の件数など
のモデル化に用いられる. ここでは, 事象の生起回数 N を確率変数として考え, N がパラメータ
α, p (α > 0, 0 < p < 1) の負の二項分布に従うことを N ∼ NB(α, p) で表す.

上記を表現するため,ある一定期間内での事象の平均生起回数 Λが形状母数 α,尺度母数 1/β(> 0)

のガンマ分布に従うと仮定し, 事象の生起パターンがポアソン分布と同様であると仮定する. 言い
換えれば, 次式が成立する.

P(N = n) =

∫ ∞

0

λn exp(−λ)

n!
· βα

Γ(α)
· λα−1 · e−βλdλ, (1)

=
βα

n!Γ(α)

∫ ∞

0

λn+α−1 · e−(β+1)λdλ, (2)

=
βα

n!Γ(α)
· Γ(n+ α)

(β + 1)n+α
. (3)

ここで, p = β/(β + 1) と定義すれば, 次式が得られる.

P(N = n) =
Γ(n+ α)

Γ(n+ 1)Γ(α)
·
(

β

β + 1

)α

·
(

1

β + 1

)
, (4)

=n+α−1 Cα−1 · pα · (1− p)n. (5)

2 シミュレーション
生起回数が負の二項分布に従う事象の離散時間シミュレーションは, 例えば図 1 のようにして実

施できる. 固定のタイムフレーム T 毎に, 平均生起回数 Λ をガンマ分布に従う確率変数として抽
出し, 時間 T が経過するまで, 平均 1/Λ の指数分布に従う事象を発生させている.

import numpy as np

from collections import Counter

import math

===

シミュレーション本体
===

def simulate_one_trial(alpha , beta , T):

1

"""

␣␣␣␣試行分のイベント生成1

␣␣␣␣alpha ,␣beta␣:␣Gamma(alpha ,␣beta)␣の␣shape ,␣rate

␣␣␣␣T␣␣␣␣␣␣␣:␣タイムフレーム
␣␣␣␣Lambda␣␣:␣T␣あたりの平均事象数
␣␣␣␣"""

Lambda ~ （あたりの平均事象数）GammaT

Lambda = np.random.gamma(shape=alpha , scale =1.0 / beta)

単位時間あたりの rate

rate = Lambda / T

t = 0.0

event_times = []

while True:

平均 T / Lambda の指数分布
t += np.random.exponential(scale =1.0 / rate)

if t > T:

break

event_times.append(t)

return Lambda , event_times

===

負の二項分布（理論値）: PMF

N(T) ~ NB(alpha , p), p = beta / (beta + 1)

===

def negbin_pmf(n, alpha , beta):

p = beta / (beta + 1.0)

return (

math.gamma(n + alpha)

/ (math.gamma(alpha) * math.factorial(n))

* (p ** alpha)

* ((1 - p) ** n)

)

===

検証用コード
===

if __name__ == "__main__":

パラメータ
alpha = 3.0

beta = 2.0

T = 4.0

n_trials = 20000

counts = []

lambdas = []

for _ in range(n_trials):

2

lam , events = simulate_one_trial(alpha , beta , T)

lambdas.append(lam)

counts.append(len(events))

counts = np.array(counts)

---- 基本統計量 ----

print("===␣Basic␣statistics␣===")

print("Mean␣count␣␣␣␣␣:", counts.mean())

print("Variance␣count␣:", counts.var())

print("Mean␣lambda␣␣␣␣:", np.mean(lambdas))

print()

理論値
theo_mean = alpha / beta

theo_var = theo_mean + (theo_mean ** 2) / alpha

print("===␣Theoretical␣(Negative␣Binomial)␣===")

print("Theoretical␣mean␣:", theo_mean)

print("Theoretical␣var␣␣:", theo_var)

print()

---- 分布比較（最初の数点）----

print("===␣Empirical␣vs␣Theoretical␣PMF␣===")

freq = Counter(counts)

max_k = 8

for k in range(max_k + 1):

emp = freq[k] / n_trials

theo = negbin_pmf(k, alpha , beta)

print(f"k={k:2d}␣␣empirical ={emp :.4f}␣␣theoretical ={theo :.4f}")

図 1: Simulation code for events whose counts follow a negative binomial distribution.

参考文献

付録 A 特になし

3

