AREBSED “HGMIHES FRDOS Ial—Ya v
Hirotsugu Seike
20264F1 H1H

1 EA

B IS, BRI X2 (B ONSOX2E B L EEROREERBMIES HHTH 5.
Bl ziX, 1 Hofc Y ay ECRET 25—, HEHED SNS KR - B - FRotBiky
DETIMUICHWSONS. T2 T, FROEREE N ZHEREHE LTEZX, N D987 X=X
a,p(@a>0,0<p<1) DEDIHFMIINS Z&% N ~NB(a,p) TKT.

FRERHT 2720, 2 —EHRINTOEROFEHAEERE A DR o, REEEHEZ 1/8(> 0)
DH V= HIIHED CAEL, BROEEAZ—VBET Y R RMTH 2 ERET 3. 0
Faz X, KADIILT 5.

FANexp(=A) BY 1
P(N:n):/o m o) XL e AN, (1)
_ B [T e —(8+1)
n!F(a)/o Arte—l o =(BHDAgN (2)
~ nll(a) (B4 1)nte’
ZIZT,p=p8/B+1) LERTII, X EHN5.
o L(n+ a) 8 * 1
POV = = r (ar1) () W
—n+a-—1 Coz—l 'pa : (]- 7p)n (5)

2 YXalb—r3ay

AEEEDE O IHSICHE D BROBEWRRS I 21— a 2id, FlZIER 1 XS5 LTE
MTE2. BEEDXRA LT L —5 T8I, FEERRBE A &5 2~ 0IhE D MERZE Y LT
HL, B T 256585 2 T, P 1/A OIS FREREIE TV S,

import numpy as np
from collections import Counter
import math

f#f ===
PIal—arvAk
===

def simulate_one_trial (alpha, beta, T):

nnn
LLLUR T DA XY MK
uuuualpha, betay:,Gamma (alpha, beta) D shape, rate
uuuuTuuuuuuuiu&/f-L\7l/—L\
vuuuLambdayy: uTudH 72 D O HEFEE

nnn
ooy

Lambda ~ (D7) OTVHERE) GammaT
Lambda = np.random.gamma (shape=alpha, scale=1.0 / beta)

BRI H72D D rate
rate = Lambda / T

t = 0.0
event_times = []

while True:
¥ T / Lambda DI

t += np.random.exponential(scale=1.0 / rate)

if t > T:
break

event_times.append (t)

return Lambda, event_times

OIS (BEwfE) - PMF
N(T) ~ NB(alpha, p), p = beta / (beta + 1)

def negbin_pmf(n, alpha, beta):
p = beta / (beta + 1.0)
return (
math.gamma(n + alpha)
/ (math.gamma (alpha) * math.factorial(mn))
* (p ** alpha)
* ((1 - p) **x n)

)
===
MEEHa— K
============-=s=s==s========s=s==s=========s=================
if __name__ == "__main__"

RNTRX—=X

alpha = 3.0

beta = 2.0

T = 4.0

n_trials = 20000

counts = []
lambdas = []

for in range(n_trials):

lam, events = simulate_one_trial (alpha, beta, T)
lambdas.append (lam)
counts.append(len(events))

counts = np.array(counts)

---- HARWGEIE ----

print ("===_Basicstatistics==="

print ("Mean,countuuu:", counts.mean())
print ("Variance count,:", counts.var())
print ("Mean,lambda, ,,:", np.mean(lambdas))
print ()

BHamfE
theo_mean = alpha / beta
theo_var = theo_mean + (theo_mean ** 2) / alpha

print ("===_,Theoretical (Negative Binomial) ==="
print ("Theoretical mean, :", theo_mean)

print ("Theoretical var,,:", theo_var)

print ()

--—- otk (BP0 ----

print ("===_,Empiricalvs, Theoretical ,PMF ==="
freq = Counter (counts)

max_k = 8

for k in range(max_k + 1):
emp = freqlk] / n_trials
theo = negbin_pmf (k, alpha, beta)
print (f"k={k:2d} empirical={emp:.4f} ,theoretical={theo:.4f}")

1: Simulation code for events whose counts follow a negative binomial distribution.

BE R
T8 A RICHL

