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Abstract—Nakamoto’s consensus protocol, which is well known
for its resistance to sybil attacks by using PoW (Proof of Work),
enables us to build public blockchains, such as Bitcoin. In this
protocol, miners seek to extend the longest chain by solving
blockhash-based cryptographic puzzles and the required time
is probabilistically determined. Therefore, the distribution of
the time interval affects security, performance and applications
which utilize the block height information. Some researchers
assumed that the time follows an exponential distribution but
this assumption requires that the blockchain network is fully
synchronized. To overcome this unreal scenario, the bounded
delay model, in which there is an upper bound for block
propagation delay on the network, was proposed. However, it
is difficult to calculate the upper bound without observing delay
and bandwidth on real-world network links.

To solve this problem, we proposed another method to analyze
the distribution of the longest chain growth time interval by using
the observed fork rate. We derived a closed-form lower bound
for the CDF (Cumulative Distribution Function) of the time to
update the global block height. We also obtained the Pearson
distance which can be used as the metric to judge whether
the network is approximately synchronous or not. Finally, we
conducted network simulations for comparing our lower bound
with the lower bound that is based on the bounded delay model.
In numerical examples, we show how the block size affects these
lower bounds.

Index Terms—Nakamoto’s consensus, PoW (Proof of Work),
the longest chain growth time interval, block propagation delay

I. INTRODUCTION

Public blockchain technology was first introduced by S.
Nakamoto for Bitcoin [1], which is one of the decentral-
ized digital currencies, and currently is applied to various
applications beyond exchanging money. Public blockchains,
such as Bitcoin [1], Namecoin [2] and Ethereum [3], have
been maintained by Nakamoto’s consensus protocol, which is
well known for its resistance to sybil attacks by using PoW
(Proof of Work). In this protocol, all miners seek to extend
the longest chain1 by solving blockhash-based cryptographic
puzzles. Therefore, the time interval to extend the longest
chain is also determined probabilistically and the distribution
affects security, performance and applications that use the
block height information. In Bitcoin, the faster the honest

1Ethereum does not adopt the GHOST [4] rule. It can be said that Ethereum
currently adopts Longest Chain rule in Bitcoin since Ethereum only uses uncle
block rewards as incentives for miners who try to extend the longest chain.

chain is generated, the more difficult it is for an attacker’s
chain to catch up with it [1]. In blockchains, TPS (the number
of Transactions Per Second) is proportional to the longest
chain growth rate [4, 5]. In blockchain-based naming systems,
such as Namecoin [2] and Blockstack [6], domain names
are registered by a two-phase commit process, in which it is
required to send a name registration transaction after the pre-
order transaction is confirmed by the pre-determined number
of sequential blocks (The details are described in [6, 7, 8]).

To obtain the distribution of the longest chain growth
time interval, the authors assumed that the time interval
follows an exponential distribution2. Using this assumption,
Grunspan et al. [9] corrected the double spend race analysis
given by S. Nakamoto [1]. Kawase et al. [10] analyzed the
mean transaction-confirmation time for Bitcoin. However, this
assumption requires that there is no block propagation delay
on the network. In other words, the blockchain network is fully
synchronized. To overcome this unreal scenario, the bounded
delay model [4, 11, 12], in which there is an upper bound for
block propagation delay, was proposed, but it is difficult to
calculate the upper bound without observing receiving times
since the block creation by deploying many nodes on the
network or considering real propagation delay on the links.
The former attempts were done in [13, 14].

In this paper, we propose another method to analyze the
distribution of the longest chain growth time interval by only
using the observed fork rate and the network block generation
rate. The low fork rate guarantees that there is a lower bound
for the CDF (Cumulative Distribution Function) of the network
block creation rate for extending the longest chain. From this
point of view, we derive a closed-form lower bound for the
CDF of the longest chain growth time interval. This lower
bound can be used for calculating an upper bound for the
mean time to update the global block height and numerically
computing a lower bound for the CDF of the time it takes
for the longest chain to grow by n (> 1) blocks. We also
give the Pearson distance, which can be used as the metric to
judge whether the network is approximately synchronous or
not. Finally, we conducted network simulations for comparing
our lower bound with the lower bound that is based on the

2This derivation is reviewed in [9].



bounded delay model. In numerical examples, we show how
the block size affects these lower bounds.

II. RELATED WORK

To analyze the longest chain growth time interval of a
PoW blockchain, there are two types of models: Synchronous
Model and Asynchronous Model. In this section, we explain
conventional approaches for evaluating how the longest chain
grows with respect to time.

A. Synchronous Model

In the synchronous model, no blockchain forks occur on
the honest network since there is no block propagation delay.
Therefore, the distribution of the time to mine a new block
strictly matches the distribution of the longest chain growth
time because there are no orphaned blocks. In [9], the authors
assumed that the distribution of the block interval follows an
exponential distribution, and using this assumption, they gave
a closed-form formula for the probability that a double spend
attack succeeds. The formula was also derived in the discrete
model for the longest chain growth [15]. The CDF of the time
t (≥ 0) for the longest chain to grow by n blocks Gnd(n, t)
can be calculated by the following equation in [9].

Gnd(n, t) = 1− exp(−λt)

n−1∑
k=0

(λt)k

k!
. (1)

The PDF (Probability Density Function) gnd(n, t) can be
derived from the CDF with the following equation in [9].

gnd(n, t) =
d[Gnd(n, t)]

dt
,

=
λn

(n− 1)!
· tn−1 exp(−λt). (2)

λ is the block generation rate or the mining speed3, and 1/λ is
the average time to mine a new block. When n = 1, Equation
(2) is re-written as follows.

gnd(t) = λ exp(−λt). (3)

The right side of Equation (3) represents an exponential dis-
tribution with parameter λ, and to simplify our notations, we
define Gnd(1, t) ≡ Gnd(t) and gnd(1, t) ≡ gnd(t). Equation
(3) was used for deriving the mean transaction-confirmation
time for Bitcoin in [10].

To evaluate security, performance and some applications
on a PoW blockchain with respect to the time it takes for
the longest chain to grow in the synchronous network, we
can simply use Equations (1, 2, 3). However, there is block
propagation delay in the actual network. Hence, to adopt
Equations (1, 2, 3), we need a method to judge whether the
blockchain network can be approximately synchronous.

3The block creation rate λ is given by the total computing power of a
blockchain network and the algorithmically determined mining difficulty of
each block. In this paper, we deal with this rate as a constant value (We ignore
difficulty adjustments).

B. Asynchronous Model

To overcome the unreal scenario that the blockchain net-
work is fully synchronized, the bounded delay model was
proposed [4, 11, 12]. In this model, there is an upper bound
D (≥ 0) for block propagation delay in the asynchronous
network. Even in the worst case, all miners receive a block
D seconds after the block is mined. Thus, in the bounded
delay model, we can calculate the lower bound Gcd(t) for the
CDF of the time it takes for the main chain to grow by n
blcoks from the following equation, considering the network
that block propagation delay is always a constant value D.

Gcd(t) =

{
Gnd(n, t− nD) (t ≥ nD),
0 (0 ≤ t < nD).

(4)

Gcd(t) is regarded as the CDF of the chain growth time when
the mining process of each block is always delayed by a
constant time D. The PDF gcd(n, t) is given by the following
equation.

gcd(n, t) =

{
gnd(n, t− nD) (t ≥ nD),
0 (0 ≤ t < nD).

(5)

In this bounded delay model, it is required to calculate the
delay diameter of the network D. In [4], the author insisted
that the upper bound can be calculated by aggregate propa-
gation delay and an aggregate measure of bandwidth because
there is a clear linear relation between the block size and its
block propagation delay from the observed results [13] in the
case of Bitcoin. However, in this method, it is necessary to
deploy many nodes to observe receiving times since the block
generation. In [12], the upper bound D was estimated by an
assumption that the smallest bandwidth of the network links
and the diameter of the network are given in advance. It is
required to consider real propagation delay and bandwidth on
each link.

III. FORK MODEL FOR POW BLOCKCHAINS

In this section, we briefly explain the fork model, which
is explained in [13]. In addition, we newly introduce another
formula to calculate the probability of a blockchain fork. In
Section IV, the formula is used for deriving a lower bound for
the CDF of the network block generation rate for extending
the main chain. Using the lower bound, we obtain a lower
bound for the CDF of the longest chain growth time interval.

A. Blockchain fork definition

In a blockchain, blocks are organized in a directed tree. Each
block b, except the root block g, has a reference to its parent
block4. If the root block, which is also known as the genesis
block, is the block’s ancestor, the distance between the block
b and the root block g is defined as its block height hb (This
means that hg = 0). We adopt the notation βh to reference the
set of blocks at height h. A blockchain fork occurs at block
height h when |βh| > 1.

4Each block uniquely determines its parent by its hash pointer.



Fig. 1: This figure shows an example of all found blocks
between the block height h′ to h′ + 5. Each blue block is the
earliest generated block at one height, and green blocks are
the other blocks.

B. The probability of a blockchain fork

Figure 1 shows an example of all validated blocks between
the block height h′ to h′ + 5. In this example, there are three
forks since |βh| > 1 when the block height h is equal to
h′ + 1, h′ + 2 or h′ + 3. Thus, the observed fork rate is
0.5. By assuming that the network topology is symmetric and
the network computational resource is fully distributed, the
theoretical probability of a blockchain fork PF is derived in
the following equation [13, eq. (2)].

PF = 1− (1− Pb(λ))
∫ ∞
0

(1−F (t))dt. (6)

In [13], F (t) is the CDF of the rate at which network miners
know a block and the time t is the elapsed time since the
first mined block at one height has been mined (F (t) can
also be treated as a lower bound for the ratio of the block
generation rate for extending the longest chain to the network
block creation rate5). Pb(λ) is the probability of a block being
found by all miners within a second. In [13], since they
analyze Bitcoin, the block generation rate λ is small enough
to approximate Pb(λ) as λ. To calculate the theoretical fork
rate, even if λ is high, we derive another formula, as follows.

PF = 1− exp
(
−λ

∫ ∞

0

(1− F (t))dt
)
. (7)

This equation holds whether λ is low or high. We give a
derivation of Equation (7) in Appendix A. In the next section,
we obtain a lower bound for the block creation rate for
extending the main chain at time t by deriving a lower bound
for F (t).

IV. PROPOSED ANALYSIS OF THE LONGEST CHAIN
GROWTH TIME BASED ON THE BLOCKCHAIN FORK RATE

In this section, we derive a closed-form lower bound for
the CDF of the longest chain growth time interval, give the

5In [13], 1 − F (t) is the ratio of computing resource which is not used
for extending the first block mined at one height, if forks don’t occur at the
height. That is to say, the block generation rate for updating the global block
height at time t is at least λF (t). This is because, even in the worst case, the
first mined block can be extended with the block generation rate λF (t).

Pearson distance which can be used for judging whether the
network can be approximately synchronous or not, and show
network simulation results to reveal how the block size affects
our lower bound and the lower bound which is based on the
bounded delay model.

A. Proposed lower bound based on the observed fork rate
In this subsection, we explain how to obtain our lower

bound for the CDF of the longest chain growth time in the
following procedure. First, we derive a lower bound for F (t),
which is also a lower bound for the ratio of the block gener-
ation rate for extending the main chain to the network block
creation rate, by using the observed fork rate. Next, instead
of F (t), we substitute its lower bound into the differential
equation which is used for calculating a lower bound for the
CDF of the longest chain growth time. The solution of this
differential equation is the lower bound for the CDF of the
time to update the global block height.

1) A lower bound for F(t) by using the observed fork rate:
Using the observed fork rate PF , we derive a lower bound for
F (t). At first, we calculate Tw from Equation (7), as follows.

Tw ≡
∫ ∞

0

(1− F (t))dt,

=
− log (1− PF )

λ
. (8)

Tw is defined as the ”weighted average” delay [12] or the mean
computational time wastefully consumed for propagating each
block [13]. Equation (8) implies that the smaller PF makes
Tw smaller because 0 ≤ 1 − PF < 1. This also means that
F (t) must be faster converged to 1 with respect to time, and
gives us a lower bound for F (t) at any time t ≥ 0. Suppose
that α and ωα such that F (ωα) = α, the following inequality
is obtained from Equation (8).

Tw =

∫ ∞

0

(1− F (t))dt,

≥
∫ ωα

0

(1− F (t))dt,

≥
∫ ωα

0

(1− α)dt = (1− α)ωα. (9)

Inequality (9) can be simplified into Inequality (10).

ωα ≤ Tw

1− α
. (10)

Here, we define Flb(t) such that Flb (Tw/(1− α)) = α at any
time t ≥ Tw. From this definition, F (t) ≥ Flb(t) is satisfied
at any time (t ≥ Tw) since Tw/(1−α) is the upper bound for
ωα. We also define Flb(t) = 0 when 0 ≤ t < Tw, and then
we get a closed-form lower bound for F (t), as follows.

Flb(t) =

{
1− Tw

t

(
t ≥ Tw

)
,

0
(
0 ≤ t < Tw

)
.

(11)

Figure 2 illustrates the relationship between Inequality (10)
and Equation (11). If there is a time t′ such that Flb(t

′) ≤
F (t′), the theoretical probability of a blockchain fork must be
higher than the observed fork rate.



Fig. 2: An example of a lower bound for F (t)
(λ = 1/600, PF = 0.05)

2) A lower bound for the CDF of the time for extending
the longest chain by 1 block: We obtain a lower bound Flb(t)
for F (t) from Equation (11). Considering the case that miners
only extend the first found block at one height (In this scenario,
miners stop mining if they don’t know the target block), the
block creation rate for updating the global block height strictly
equals λF (t). In addition, we assume that the block generation
rate for extending the main chain is λFlb(t) instead of λF (t).
These assumptions only make the chain growth rate worse.
Hence, we consider the CDF of the longest chain growth time
interval in this scenario, and define the CDF as our closed-form
lower bound Glb(t). With this notation, Equation (12) holds
since the right side of Equation (12) implies the probability
that miners succeed to extend the first mined block at one
height during the short period [t, t+∆t)6. Equation (13) can
be easily derived from Equation (12).

Glb(t+∆t)−Glb(t) =
(
1−Glb(t)

)
λFlb(t)∆t. (12)

∴ ∂Glb(t)

∂t
=

(
1−Glb(t)

)
λFlb(t). (13)

The solution of Differential Equation (13) is given in Equation
(14).

Glb(t)=


1− C exp

(
−λ

(
t− Tw log t

))(
t ≥ Tw

)
,

0
(
0 ≤ t ≤ Tw

)
.

(14)

(
C = exp

(
λ · Tw(1− log(Tw))

))
The constant value C is obtained by Glb

(
Tw

)
= 0. Lower

bounds calculated from Equation (14) are shown in Figure 3.
When the given fork rate is small, the lower bound approaches
the CDF which is based on the synchronous model.

6In the short period [t, t+∆t), there is a chance λFlb(t)∆t that the first
found block will be extended if the chain growth event doesn’t occur until
time t.

We also define glb(t) as the function obtained by differen-
tiating Glb(t) with respect to time. glb(t) can be calculated in
the following equation.

glb(t) =


C exp

(
−λ

(
t− Tw · log(t)

))
× λ

(
1− Tw

t

)(
t ≥ Tw

)
,

0
(
0 ≤ t ≤ Tw

)
.

(15)

(
C = exp

(
λ · Tw(1− log(Tw))

))
We plot glb(t) in Figure 4 for the case of λ = 1/600, 1/15. In
Section IV-A3, using glb(t), we compute the Pearson distance
between glb(t) and the exponential distribution based on the
synchronous model. In Section IV-A4, we obtain the upper
bound for the average chain growth time by using glb(t).

3) Estimating the degree of approximation between glb(t)
and gnd(t) which is based on the synchronous model : To
evaluate the degree of approximation Gnd(t), which is based
on the synchronous model, and Glb(t), which is a lower bound
for Gnd(t), we use the Pearson distance [16], is a measure
used for the goodness of fit test which determines whether the
observed frequency distribution is the same as the theoretical
distribution. We don’t adopt the Kullback-Leibler distance
[17], which is one of the most frequently used distance
measure, because we can’t calculate log (glb(t)/gnd(t)) with
t < Tw.

The Pearson distance between gnd(t) and glb(t) can be
derived from Equation (16) by using the upper incomplete
gamma function Γ(a, x) =

∫∞
x

ta−1 exp(−t)dt (A derivation
of Equation (16) appears in Appendix B). In Table I, the
distances are shown. This distance can be used as an indicator
to judge whether the blockchain network is approximately
synchronous or not by using two-sample test or by change-
point detection [18]. In addition, this distance has a good
characteristic that it only depends on the observed fork rate
(λTw = − log(1− PF )).

Fig. 3: Lower bounds for CDF of the longest chain growth
time which are calculated from Equation (14) (λ = 1/600)



(a) λ = 1/600 (b) λ = 1/15

Fig. 4: Comparison of gnd(t) which is based on the synchronous model and glb(t) which is calculated from our scenario to
derive a closed-form lower bound

∫ ∞

0
gnd(t)

(
glb(t)

gnd(t)
− 1

)2

dt = −1 + exp(λTw) + (λTw)−2(λTw−1) · exp(2λTw) · Γ(2λTw − 1, λTw) (16)∫ ∞

0
t · glb(t) dt = C · λ−1−λTw

(
Γ
(
λTw + 2, λTw

)
−λTwΓ

(
λTw + 1, λTw

))
(17)(

Tw =
− log(1− PF )

λ
, C = exp

(
λ · Tw(1− log Tw)

))

TABLE I: The Pearson distance
between glb(t) and gnd(t)

Fork rate The Pearson distance
0.0010 0.001998
0.0025 0.004994
0.0050 0.009990
0.0100 0.020018
0.0250 0.050559
0.0500 0.103501
0.1000 0.219171
0.2000 0.503638
0.4000 1.453386

TABLE II: An upper bound for Mean time
to update the global block height (λ = 1/600)

Fork rate An upper bound (λ = 1/600) An upper bound (λ = 1/15)
0.0010 604.42 [sec] 15.11 [sec]
0.0025 609.71 [sec] 15.24 [sec]
0.0050 617.47 [sec] 15.44 [sec]
0.0100 631.15 [sec] 15.78 [sec]
0.0250 666.15 [sec] 16.65 [sec]
0.0500 716.33 [sec] 17.91 [sec]
0.1000 805.19 [sec] 20.13 [sec]
0.2000 968.91 [sec] 24.22 [sec]
0.4000 1305.18 [sec] 32.63 [sec]

4) An upper bound for the mean time to update the global
block height: We derive a closed-form lower bound Glb(t) by
considering the scenario that miners only extend the earliest
found block at each height and don’t mine blocks if they
don’t know the head block of the longest chain. Therefore, the
average time to update the global block height in the scenario
is an upper bound for the mean growth time in the scenario
that miners extend their local longest chain. The upper bound
can be calculated by Equation (17) (A derivation of Equation
(17) appears in Appendix C). Calculation results are shown in
Table II.

5) A lower bound for the CDF of the time for the longest
chain to grow by n(> 1) blocks: Since it is difficult to derive a
closed-form lower bound Glb(n, t) for the CDF of the time it
takes for the chain to grow by n blocks from Equation (13), we

numerically computed Glb(n, t) by a Monte Carlo simulation
that uses the inverse transform method. We generate a random
variable by the inverse function of its CDF Glb(t). The inverse
function can be calculated as follows (Glb(t) = u (u ∈ [0, 1))).

G−1
lb (u) = −Tw ×W

(
−
(
(1− u)/C

)1/(λ·Tw)

Tw

)
(18)(

C = exp
(
λ · Tw(1− log(Tw))

))
W (·) is Lambert W function. We can generate a random
variable by substituting a uniform random variable u ∈ [0, 1)
into G−1

lb (u). By generating the sum of the n random variables
repeatedly, we obtained the cumulative relative frequency
graphs in Figure 5.



Fig. 5: Numerically calculated lower bound for the CDF of
the time for the chain to grow by 6 blocks when λ = 1/600
(Points are means, error bars are 99.9% CIs).

B. Network simulation results

To calculate the CDF of the longest chain growth time
interval, we simulated the growth of the main chain by
emulating the topologies of Bitcoin’s P2P overlay network.
In our simulation, There are two types of nodes: full nodes
and miner nodes. Following a behavior similar to Bitcoin’s
reference client7, each full node maintains 8 outgoing con-
nections and accepts all incoming connections. Each miner
node connects to the 100 full nodes at random (In 2014,
the highest degree nodes on the Bitcoin network have more
than 90 degrees [19]). The number of full nodes equals
5,000 and the number of miner nodes is equal to 20. The
propagation delays on the links were calculated from a normal
distribution (N (µ, σ), µ = σ = 100 [milliseconds]), and
the bandwidth of each link was determined from a normal
distribution N (µ, σ), µ = 4.0, σ = 0.8 [Mbps]. Both values
were re-sampled if there was a negative value. We performed
4 network simulations (λ = 1/600 and the block size equals
1 MB or 10 MB, and λ = 1/15 and the block size equals 25
kB or 250 kB). Each simulation was run for 50,000 sequential
blocks. Simulation results are shown in Figure 6 (Table III and
IV show example values of simulation results in Figure 6. (a)
and (b)). We use the observed fork rate to compute our lower
bound based on Equation (14). To calculate the lower bound
Gcd(1, t), we use the longest time it takes for a block to be
propagate to all miners as the upper bound D.

V. DISCUSSION

A. Comparison between our lower bound Glb(t) and the
lower bound Gnd(t) based on the bounded delay model

Figure 6 shows that Gnd(t) is a tighter bound than Glb(t)
for most of the time. This is because the average weighted
delay, which can be calculated from Equation (9), diverges
infinitely if F (t) = Flb(t). On the other hand, in the constant

7https://github.com/bitcoin/bitcoin/

delay network which is used for deriving the lower bound
based on the bounded delay model, the average weighted delay
equals the delay diameter of the network D. However, our
lower bound is more easily calculated because the observed
fork rate is more easily acquired than D. Hence, the advantage
of our lower bound is that it is easily and simply calculable
at the expense of being tight.

We also compare the time t1 and t2 such that Gnd(t1) = p
and Glb(t2) = p (0 < p < 1) in Table III and IV. In the case
that the block size is 10 MB, λ = 1/600 and if the cumulative
probability p ≤ 0.05, our lower bound is tighter than the other
one. This is because all the amount of computational resource
is ignored before the block is propagated to all miners in the
constant delay network. Therefore, if the delay diameter of
the network D is large, our lower bound is expected to be
relatively more befitting in a certain period from beginning to
propagate the block to all miners.

B. How to apply our analysis to real-world PoW blockchains
and its limitations

In the real-world network, it is not realistic for all miners to
have the same amount of computational resource. Hence, the
observed fork rate should be considered for each miner node
and be calculated from blocks mined by the miner, but this
reduces the reliability of the observed fork probability since
the number of fork blocks which can be sampled decreases.
Therefore, a method to estimate the fork rate with a small
number of sample blocks is desired. However, our lower bound
is calculated by only using the observed fork rate and the
network block creation rate. If the fork rate seems very low,
we can consider that the blockchain network is approximately
synchronous by using the Pearson distance (Equation (16)) as
the metric. In the future, we will consider the case that the
fork rate is not low.

VI. CONCLUSION

It is desirable to estimate the distribution of the longest
chain growth time interval by a simple and low cost method.
In this paper, we derive a closed-form lower bound for the
CDF by using the fork rate which can be easily observed in the
network. Using this lower bound, we also obtain the Pearson
distance that can be used as an indicator for judging whether
the network can be approximately synchronous. By conducting
network simulations, we compared our lower bound with the
conventional lower bound based on the bounded delay model.
The conventional one is a tighter bound but it requires real
network parameters.

In this paper, we assumed that all nodes have the same
amount of computational resource and the network topology
is symmetric (These simple assumptions are also used for
calculating the fork rate in [13]). In the future, we will explore
another fork rate-based method to apply it into real-world PoW
blockchains. In addition, we should consider the case that the
block generation rate is dynamically changing because miners
can join or leave the protocol and the difficulty level evolves
over time [20].



(a) λ = 1/600, Block Size: 1 MB
Observed fork rate P̂F : 0.00636

Observed delay diameter D̂: 7.1626 [sec]

(b) λ = 1/600, Block Size: 10 MB
Observed Fork Rate P̂F : 0.06182

Observed delay diameter D̂: 81.0510 [sec]

(c) λ = 1/15, Block Size: 25 kB
Observed Fork Rate P̂F : 0.01554

Observed delay diameter D̂: 0.4242 [sec]

(d) λ = 1/15, Block Size: 250 kB
Observed Fork Rate P̂F : 0.07522

Observed delay diameter D̂: 2.7291 [sec]

Fig. 6: Each figure shows the CDF of the longest chain growth time interval that was numerically computed by a network
simulation, its upper bound, which is calculated in the synchronous model, and its two types of lower bounds. To obtain our
lower bound which is built on top of Equation (14), we used the observed fork rate. To calculate the lower bound which is
based on the bounded delay model, we used the longest time it takes for the block to be propagated into all miners on the
network as the upper bound D.

TABLE III: λ = 1/600, D̂ = 7.1626 and P̂F = 0.00636
from the simulation result in Figure 6. (a).
Cumulative
Probability

Time t1 s.t.
Glb(t1) = p

Time t2 s.t.
Gcd(t2) = p

p = 0.01 15.1 [sec] 13.2 [sec]
p = 0.05 43.9 [sec] 37.9 [sec]
p = 0.50 437.9 [sec] 423.1 [sec]
p = 0.95 1824.9 [sec] 1804.6 [sec]
p = 0.99 2792.2 [sec] 2770.3 [sec]

TABLE IV: λ = 1/600, D̂ = 81.0510 and P̂F = 0.06182
from the simulation result in Figure 6. (b).
Cumulative
Probability

Time t1 s.t.
Glb(t1) = p

Time t2 s.t.
Gcd(t2) = p

p = 0.01 64.0 [sec] 87.1 [sec]
p = 0.05 109.2 [sec] 111.8 [sec]
p = 0.50 556.7 [sec] 496.9 [sec]
p = 0.95 1986.9 [sec] 1878.5 [sec]
p = 0.99 2968.0 [sec] 2844.2 [sec]



∫ ∞

Tw

exp(−αt+ β log t) · (1−
γ

t
)2dt = α−(β+1)

(
(αγ)2Γ(β − 1, αTw)− 2αγΓ(β, αTw) + Γ(β + 1, αTw)

)
(22)∫ ∞

Tw

exp(−αt+ β log t) · (1−
γ

t
)dt = −α−(β+1) (αγΓ(β, αTw)− Γ(β + 1, αTw)) (23)

Γ(a+ 1, x) = aΓ(a, x) + xa exp(−x) (24)
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[9] C. Grunspan and R. Ṕ erez-Marco, ”Double spend races,” International
Journal of Theoretical and Applied Finance, 2018.

[10] Y. Kawase and S. Kasahara, ”Transaction-Confirmation Time for Bit-
coin: A Queueing Analytical Approach to Blockchain Mechanism,”
Queueing Theory and Network Applications: QTNA 2017, Lecture Notes
in Computer Science, vol. 10591, Nov. 2017.

[11] J. A. Garay, A. Kiayias, N. Leonardos, ”The bitcoin backbone protocol:
Analysis and applications”, Proc. 34th Int. Conf. Theory Appl. Cryptogr.
Techn. (EUROCRYPT ’15), pp. 281-310, Apr. 2015.

[12] R. Pass, L. Seeman and A. Shelat, ”Analysis of the blockchain protocol
in asynchronous networks,” Advances in Cryptology - EUROCRYPT
2017, Springer International Publishing, pp. 643-673, 2017.

[13] C. Decker and R. Wattenhofer, ”Information propagation in the Bitcoin
network,” IEEE P2P 2013 Proceedings, Trento, 2013, pp. 1-10.

[14] BitcoinStats. http://bitcoinstats.com/network/propagation/.
[15] M. Rosenfeld, ”Analysis of hashrate-based double spending,” ArXiv

1402.2009v1, Feb. 2014.
[16] K. Pearson, ”On the criterion that a given system of deviations from

the probable in the case of a correlated system of variables is such that
it can be reasonably supposed to have arisen from random sampling,”
Philosophical Magazine Series 5, 50(302): 157- 175, 1900.

[17] S. Kullback and R. A. Leibler, ”On information and sufficiency,” The
Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79-86, 1951.

[18] M. Sugiyama, T. Suzuki and T. Kanamori, Density Ratio Estimation in
Machine Learning, Cambridge University Press, 2012.

[19] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and
B. Bhattacharjee, ”Discovering bitcoin’s public topology and influential
nodes,” 2015.

[20] R. Bowden, H.P. Keeler, A.E. Krzesinski and P.G. Taylor, ”Block arrivals
in the Bitcoin blockchain,” ArXiv:1801.07447v1, Jan. 2018.

APPENDIX

A. Derivation of Equation (6)

The event of a blockchain fork occurs if miners find blocks
before the earliest mined block at one height is propagated
to the entire network. Therefore, we calculate the probability
that miners fail to find blocks which don’t extend the longest
chain during the time interval [0,∞). By defining an infinite

increasing sequence of times t0 < t1 < t2 < . . . (ti+1 − ti =
∆t, i ∈ N), the probability that a blockchain fork occurs
during the period [ti, ti+1) can be approximated as follows8.

Pb([ti, ti+1)) ≈ 1− exp(−λ(1− F (ti)) ·∆t) (19)

Therefore, using this approximation formula, the probability
that a blockchain doesn’t occur during the time interval [0,∞)
can be derived as follows.

PF ≈ 1−
∞∏
i=0

(1− (1− exp(−λ(1− F (ti)) ·∆t)),

= 1−
∞∏
i=0

exp(−λ(1− F (ti)) ·∆t),

= 1− exp(−λ

∞∑
i=0

(1− F (ti)) ·∆t),

= 1− exp(−λ

∫ ∞

0

(1− F (t))dt) (∆t → 0). (20)

B. Derivation of Equation (16)

∫ ∞

0

gnd(t)

(
glb(t)

gnd(t)
− 1

)2

dt =

∫ ∞

0

λ · exp(−λt)dt

+

∫ ∞

Tw

(
−2λC exp(−λt+ λTw log t)

(
1− Tw

t

)
+ λC2 exp(−λt+ 2λTw log t)

(
1− Tw

t

)2)
dt

(
Tw =

− log(1− PF )

λ
, C = exp

(
λ · Tw(1− log Tw)

))
We can simplify Equation (21) into Equation (16) by using

Equations (22, 23, 24).

C. Derivation of Equation (17)

∫ ∞

0

t · glb(t)dt =
∫ Tw

0

t · 0 dt

+

∫ ∞

Tw

t · λC exp(−λt+ λTw log t)
(
1− Tw

t

)
dt

=

∫ ∞

Tw

λC exp(−λt+ (λTw + 1) log t)
(
1− Tw

t

)
dt (25)

(
Tw =

− log(1− PF )

λ
, C = exp

(
λ · Tw(1− log Tw)

))
We can simplify Equation (25) into Equation (17) by using

Equation (23).

8In the short interval [ti, ti+1), we can assume the stale block generation
rate is approximated by λ · (1− F (ti)).


